Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 202: 116389, 2024 May.
Article in English | MEDLINE | ID: mdl-38677103

ABSTRACT

Plastic debris is a significant and rapidly developing ecological issue in coastal marine ecosystems, especially in areas where it accumulates. This study introduces "plasticlusters", a new form of floating debris agglomeration found in the Yasmine Hammamet marina (Tunisia, North-Africa), loosely attached to pontoon ropes around the water surface level. The analysis of two samples revealed that they were formed primarily by average 2.11 mm polystyrene fragments, 3.43 mm fibers, 104 mm polypropylene and polyethylene sheets, and 122 mm decomposing seagrass leaves. They were inhabited by several taxa, including at least 2 cryptogenic and 5 non-indigenous species (NIS). Unlike other plastic formations, plasticlusters provide a novel and potentially temporal microhabitat to fouling assemblages due to their loose and unconsolidated structure which, combined with marinas being NIS hubs, could enhance NIS dispersion. The results of this study raise concerns about the combined ecological effects of debris accumulation and biocontamination inside marinas.


Subject(s)
Ecosystem , Plastics , Tunisia , Plastics/analysis , Environmental Monitoring , Waste Products/analysis
2.
Mar Pollut Bull ; 200: 116096, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340372

ABSTRACT

Coastal sprawl is among the main drivers of global degradation of shallow marine ecosystems. Among artificial substrates, quarry rock can have faster recruitment of benthic organisms compared to traditional concrete, which is more versatile for construction. However, the factors driving these differences are poorly understood. In this context, this study was designed to compare the intertidal and subtidal benthic and epibenthic assemblages on concrete and artificial basalt boulders in six locations of Madeira Island (northeastern Atlantic, Portugal). To assess the size of the habitat, the shorelines in the study area were quantified using satellite images, resulting in >34 % of the south coast of Madeira being artificial. Benthic assemblages differed primarily between locations and secondarily substrates. Generally, assemblages differed between substrates in the subtidal, with lower biomass and abundance in concrete than basalt. We conclude that these differences are not related to chemical effects (e.g., heavy metals) but instead to a higher detachment rate of calcareous biocrusts from concrete, as surface abrasion is faster in concrete than basalt. Consequently, surface integrity emerges as a factor of ecological significance in coastal constructions. This study advances knowledge on the impact and ecology of artificial shorelines, providing a baseline for future research towards ecological criteria for coastal protection and management.


Subject(s)
Ecosystem , Silicates , Biomass , Portugal
3.
Mar Pollut Bull ; 198: 115871, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086107

ABSTRACT

Non-indigenous species (NIS) spread from marinas to natural environments is influenced by niche availability, habitat suitability, and local biotic resistance. This study explores the effect of indigenous fish feeding behaviour on NIS proliferation using fouling communities, pre-grown on settlement plates, as two distinct, representative models: one from NIS-rich marinas and the other from areas outside marinas with fewer NIS. These plates were mounted on a Remote Video Foraging System (RVFS) near three marinas on Madeira Island. After 24-h, NIS abundance was reduced by 3.5 %. Canthigaster capistrata's preference for marinas plates suggests potential biotic resistance. However, Sparisoma cretense showed equal biting frequencies for both plate types. The cryptogenic ascidian Trididemnum cereum was the preferred target for the fish. Our study introduces a global framework using RVFS for in-situ experiments, replicable across divers contexts (e.g., feeding behaviour, biotic resistance), which can be complemented by metabarcoding and isotopic analysis to confirm consumption patterns.


Subject(s)
Introduced Species , Tetraodontiformes , Animals , Ecosystem , Feeding Behavior , Portugal
4.
Mar Pollut Bull ; 188: 114724, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36860018

ABSTRACT

Harbours are highly modified habitats that differ from natural areas. They are hotspots of non-indigenous species (NIS) and act as stepping-stones in invasive processes. However, local communities can exert biotic resistance against biological invasions through trophic interactions and competition. This study assesses the biotic effects of predation on the recruitment of fouling assemblages in three marinas of NE Atlantic Portugal (Cascais, Setúbal and Sines), with particular emphasis on NIS, using predator exclusion experiments. Predation increased the relative abundance of NIS, mainly Watersipora subatra, in the estuarine marinas of Cascais and Setúbal, while no predation effects were registered in the coastal marina of Sines. Therefore, predation can increase the risk of NIS invasion (biotic facilitation). Furthermore, local ecosystems may have different effects and differ in vulnerability against NIS invasions. Finally, a better understanding of coastal invasive ecology and biotic effects in coastal artificial habitats will improve our capacity for NIS management.


Subject(s)
Biofouling , Bryozoa , Animals , Ecosystem , Portugal , Ecology
5.
Mar Pollut Bull ; 187: 114522, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36623468

ABSTRACT

Marinas are hubs for non-indigenous species (NIS) and constitute the nodes of a network of highly modified water bodies (HMWB) connected by recreational maritime traffic. Floating structures, such as pontoons, are often the surfaces with higher NIS abundance inside marinas and lead the risk for NIS introduction, establishment and spread. However, there is still little information on how the location within the marina and the substratum type can influence the recruitment of fouling assemblages depending on water parameters and substratum chemical composition. In this study, fouling recruitment was studied using an experimental approach with three materials (basalt, concrete and HDPE plastic) in two sites (close and far to the entrance) in two marinas of Madeira Island (NE Atlantic, Portugal). The structure of benthic assemblages after 6- and 12-months colonization, as well as biotic abundance, NIS abundance, richness, diversity, assemblages' volume, biomass and assemblages' morphology were explored. Differences between marinas were the main source of variation for both 6- and 12-month assemblages, with both marinas having different species composition and biomass. The inner and outer sites of both marinas varied in terms of structure and heterogeneity of assemblages and heterogeneity of morphological traits, but assemblages did not differ among substrata. However, basalt had a higher species richness and diversity while concrete showed a higher bioreceptivity in terms of total biotic coverage than the rest of materials. Overall, differences between and within marinas could be related to their structural morphology. This study can be valuable for management of urban ecosystems, towards an increase in the environmental and ecological status of existing marinas and their HMWB and mitigation coastal ecosystems degradation.


Subject(s)
Construction Materials , Ecosystem , Biomass , Portugal , Biofouling , Plastics
SELECTION OF CITATIONS
SEARCH DETAIL
...